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gests that they tap into different aspects of cognitive demand while operating automation in real life. The findings 
highlight that a combination of psychophysiological and behavioral methods can reliably capture multi-faceted 
cognitive demand in real-world automation research. 
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Note that a poster based on these findings was presented at the Society of 
Psychophysiological Research. The current work is a secondary data analysis 
that tests different research questions and analyses from prior published work 
(Lohani et al., 2021; McDonnell et al., 2023). 
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Significance statement 
Several laboratory-based measures are highly stable in 
controlled settings, but how do they perform in less con- 
trolled and arguably more “noisy” real-world conditions? 
We examined the reliability of five commonly utilized 
laboratory-based measures of cognitive demand that 
may be good candidates for real-world assessments while 
participants operated four partially automated vehicles 
on actual highways. The main focus of this research was 
to examine the reliability of a combination of behavio- 
ral, peripheral, and central nervous system-based meas- 
ures while the vehicles were being driven under partial 
automation to make inferences about the applicability of 
these measures in automation research in real-life set- 
tings. Good to excellent reliabilities were found for all 
measures, providing confidence that they can be success- 
fully adopted to measure cognitive demand while motor- 
ists operated automation on actual roads. 

Introduction 
In 2024, about 54 million vehicles with some form of 
automation are expected to be driven on real roads, mak- 
ing partially automated vehicles an everyday mode of 
transportation (Statista, 2023). These forecasts also high- 
light the need for objective and reliable ways to measure 
motorists’ cognitive states while driving partially auto- 
mated vehicles in real-world conditions. While many 
physiological and behavioral measures of cognition can 
be reliably measured in real time in controlled labora- 
tory settings, limited research has tested the reliability 
of these measures under real-world conditions (Lohani 
et al., 2019). The current work aimed to address this 
knowledge gap and extend the applicability of reliable 
measures to real-world automation research. 

The Society of Automotive Engineers (SAE, 2016) iden- 
tifies automation along a spectrum varying from none or 
manual (Level 0) to full automation (Level 5), which can 
operate without any human involvement. While Level 5 
is still unavailable to consumers for purchase for several 
years to come (Bazilinskyy et al., 2019), partially auto- 
mated vehicles (that still require human involvement in 
the driving process) are readily available and are becom- 
ing quite popular. The most prevalent advanced partial 
automation available is Level 2, which allows the automa- 
tion of lateral (e.g., steering) and longitudinal (e.g., brak- 
ing) control of the vehicle at the same time (SAE, 2016). 
Although commercial automation technology can per- 
form several key driving tasks, it is still quite susceptible 
to error, making it necessary for motorists to be always 
engaged in the driving process. However, human drivers’ 
distractions and misuse of automation features have been 
identified as a few of the major reasons for partial auto- 
mation vehicle collisions (e.g., National Transportation 

Safety Board, 2020). Such findings suggest that having 
more objective ways to assess cognitive states in partially 
automated vehicles would be valuable in identifying sub- 
optimal levels of human cognitive engagement in the 
driving task. 

At the same time, an important purpose of automation 
is to lower task demands imposed on humans, thereby 
maintaining task performance for long durations, reduc- 
ing human error, and improving safety (Scerbo, 2007). 
Thus, having reliable ways of measuring task demands 
imposed on motorists operating partially automated 
vehicles in near-real-time, particularly cognitive demand, 
would help assess and manage them effectively. Ideally, it 
would also help to have measures that are minimally dis- 
ruptive to the primary driving task, allowing for a more 
accurate assessment. It would also, therefore, help to 
know how different measures of cognitive demand tap 
into the same construct because multiple measures for 
the same construct are widely utilized. This would help 
draw comparisons across measures and studies on cogni- 
tive demand imposed while operating automation. 

The driving task recruits several systems, such as visual 
perception, motor, attention, planning, and memory (e.g., 
Bergen et al., 2013; Engström et al., 2005; Lohani et al., 
2019; Strayer, 2015). Given that several cognitive demand 
measures are available to be potentially measured at the 
same time, domain-general versus domain-specific per- 
spectives are a useful way to understand how different 
measures are tapping into one global or multi-faceted 
cognitive demand construct. If multiple cognitive meas- 
ures tap into the domain-general resource for the driv- 
ing task (Kahneman, 1973; Navon & Gopher, 1979), there 
would be a greater overlap between the measures. In con- 
trast, if the measures were tapping into separable systems 
due to the multi-faceted nature of the driving task and 
aligned with domain-specific theory (Wickens, 1984), 
there would be a negligible to small overlap between the 
measures. To identify relevant measures, in a review of 
potential measures for assessing cognition during real- 
world driving, Lohani et al. (2019) have argued that a crit- 
ical starting point is to select measures that can reliably 
measure cognition in controlled laboratory settings and 
then adapt them to naturalistic environments. Further, 
this review found some peripheral (cardiovascular) and 
central nervous system-based (electroencephalogram; 
EEG) measures as good candidates for near real-time and 
real-world assessment of drivers’ cognitive states. 

One of the most promising peripheral nervous sys- 
tem-based measures is heart rate (Berntson et al., 2007), 
which is the count of heartbeats in a minute (also called 
beats per minute; BPM). It represents physiological 
arousal due to cognitive demand in automation research 
(Hidalgo-Muñoz et al., 2018; Lenneman & Backs, 2009; 
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Mehler et al., 2012; Ruscio et al., 2017). A higher cogni- 
tive demand (such as workload) while driving on-road is 
systematically linked to increased heart rate (e.g., Reimer 
et al., 2009). A less common cardiovascular measure is 
heart rate variability (HRV), which captures variabil- 
ity in adjacent heartbeats and is associated with cogni- 
tive demand during driving-related and goal-directed 
behavior (Heine et al., 2017; Hidalgo-Muñoz et al., 2018; 
Lee et al., 2007; Tozman et al., 2015; Zhao et al., 2012). 
A common heart rate variability measure in automation 
research is a time domain-based parameter called the 
Root-Mean-Square of Successive Differences (RMSSD) in 
normal heartbeats, which measures the temporal varia- 
bility in adjacent heartbeats. Decreases in RMSSD values 
while driving represent increases in cognitive demand, 
such as workload (Mehler et al., 2011). 

Furthermore, a central nervous system-based method 
is the electroencephalogram (EEG), which can be used 
to examine the EEG alpha power. To provide some back- 
ground information, the EEG records the brain’s elec- 
trical activity in voltages through electrodes placed on 
specific locations of a person’s scalp (Nunez & Srinivasan, 
2006). These electrical signals have a high temporal reso- 
lution (in milliseconds). Existing transformations (such 
as the fast Fourier transformation) can convert the time 
domain EEG signal (in milliseconds) into the frequency 
domain (in Hz), thereby creating a spectrum of frequen- 
cies, allowing researchers to study specific frequency 
bands that have meaningful interpretations for cogni- 
tive activity. The EEG alpha power is the power in the 
8–12 Hz spectral frequency band and is one of the most 
well-studied and prominent oscillatory components in 
the EEG literature (e.g., Donoghue et al., 2022; Klime- 
sch, 2012). Moreover, alpha is clearly distinguished from 
background neural activity in the EEG frequency spec- 
trogram (Donoghue et al., 2022), observed as a clear peak 
in the 8–12 Hz frequency range that is maximal over pos- 
terior electrodes. EEG alpha power reflects the functional 
inhibition of sensory input (Jensen & Nazaheri, 2010) 
and, as such, variations in cognitive workload (Käth- 
ner et al., 2014). Furthermore, in the driving context, 
increases in cognitive demand are well-documented to 
decrease EEG alpha power (Borghini et al., 2014; Käthner 
et al., 2014), whereas more relaxed conditions increase 
it (Zander et al., 2017). Thus, EEG alpha power is a valid 
measure of cognitive workload in driving research (for 
more details, see Lohani et al., 2019). 

In addition to these physiological measures, a stand- 
ardized behavioral measure commonly adopted in driv- 
ing research is the Detection Response Task (DRT; ISO 
17488 guidelines, 2016). It involves outfitting a motorist 
with a vibrating device on their arm and instructing them 
to manually respond while operating the vehicle as soon 

as the device vibrates. The reaction time and accuracy 
performance on the Detection Response Task are exam- 
ined with slower and inaccurate responses representing 
higher cognitive workload. This vibrotactile detection 
measure has been specifically designed and standardized 
to assess cognitive workload that is sensitive to driving- 
related tasks (ISO 17488 guidelines, 2016) without signif- 
icant additional cost (Castro et al., 2019). It has also been 
successfully adopted in partial automation research (e.g., 
Lohani et al., 2020, 2021). Slowing down and increased 
errors on the Detection Response Task represent 
increases in driving-related cognitive workload (Young 
et al., 2013). To summarize, these five measures discussed 
above are sensitive to various driving-associated cogni- 
tive demands, which makes them suitable for measuring 
cognitive demand during automated driving conditions. 

 
 

The current study 
Several laboratory-based measures have high reliability 
in controlled settings, but how do they perform in less 
controlled and arguably more “noisy” real-world con- 
ditions? We examined the reliability of five cognitive 
demand measures while participants operated partially 
automated vehicles across four occasions in real-world 
driving conditions. Participants drove on actual high- 
ways on four different occasions while their heart rate 
(measured in BPM), heart rate variability (measured 
using RMSSD), EEG alpha power, Detection Response 
Task reaction time, and Detection Response Task hit- 
rate data were collected simultaneously. The main focus 
of this research was to examine these relations while the 
vehicles were being driven under partial automation to 
make inferences about the applicability of these measures 
in automation research in real-life settings. However, for 
reference, we also report data while the same vehicles 
were being operated in manual mode. 

Two research questions were examined: First, how sta- 
ble are measures of cognitive demand when assessed on 
multiple occasions in real-world conditions? In order to 
examine the reliability of a measure over time, test–retest 
reliability using the intraclass correlation (ICC) was cal- 
culated for each measure separately (Weir, 2005). Spe- 
cifically, ICC1 (McGraw & Wong, 1996; Shrout & Fleiss, 
1979) was assessed as this coefficient captures the reli- 
ability of a measure across occasions. A similar approach 
has been adopted in comparable work examining the test–
retest stability of measures to capture a cognitive 
workload construct in listening research (Alhanbali et al., 
2019). As these cognitive measures have been shown to 
be reliable in laboratory settings, we argued that success- 
ful adaptation to real-world driving would require simi- 
larly high measures of test–retest reliability on the road 
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to what has been observed in the laboratory under man- 
ual and partially automated driving.1 

Second, how do these different measures of cognitive 
demand intercorrelate with one another? These measures 
may all tap into a general construct of cognitive demand 
that is at play while operating automation on real roads, 
leading to high intercorrelations and highly reliable coef- 
ficients. Alternatively, a multi-faceted construct may bet- 
ter capture the construct of cognitive workload, which 
would be reflected by lower correlations between meas- 
ures and a better fit (i.e., higher internal consistency) 
when comparing a multi-factorial factor structure repre- 
senting more than one latent variable to a general factor 
saturation. A few psychometric coefficients that capture 
how well the measures tap into a similar construct were 
evaluated, including omega (McDonald, 1999; see data 
analysis plan). A simultaneous assessment of multiple 
measures enabled an examination of overlap across vari- 
ous cognitive demand measures and whether they tap 
into the same construct. Given that a limited understand- 
ing exists across different cognitive demand measures in 
real-world settings, we explored whether the multiple 
measures tap into a general versus multi-faceted con- 
struct of cognitive workload. 

Method 
Participants 
Seventy-one participants (25 females) between the ages 
of 21 and 64 (Mage = 40.32 years, SD = 13.37) took part 
in this study. This age range was based on guidelines for 
automation testing (NHTSA, 2013). Eligibility criteria 
included no neurological or cardiovascular health issues, 
no self-reported experience with partially automated 
vehicles, having a valid driver’s license, and a good driv- 
ing record (e.g., no at-fault accidents in the previous two 
years). The University of Utah’s Division of Risk Manage- 
ment confirmed the driving records. All screened partici- 
pants also completed the Division of Risk Management’s 
online defensive driving course. 

 
Measures 
Heart rate (BPM) and its variability (RMSSD) 
Heart rate data were sampled (2000 Hz) via an electro- 
cardiogram (ECG) system and AcqKnowledge software 
(Biopac System Inc.). Data were processed using the 
recommended guidelines for cardiovascular data (e.g., 
Berntson et al., 2007; Task Force of the European Soci- 
ety of Cardiology, 1996). The ECG signal was first band- 
pass filtered (1–35 Hz), followed by detecting R-peaks via 

AcqKnowledge software. Due to the real-world nature 
of the driving task, potential artifacts (such as those 
from the driving task or sneezes, etc.) are expected to be 
present as noise. Thus, following recommendations to 
remove any such artifacts, all data were visually inspected 
and corrected for proper detection of R-peaks. After 
completing data processing, heart rate and heart rate var- 
iability (RMSSD) were calculated. 

 
EEG alpha power 
A gel-based system (Biopac Systems Inc.) was used to col- 
lect EEG data sampled (2000 Hz) from the midline pari- 
etal site (Pz2; Jasper, 1958). MATLAB and the EEGLAB 
toolbox were utilized to process data using best practices 
(Delorme & Makeig, 2004). These included a 0.1–30 Hz 
band-pass filter followed by one-second epochs using a 
Hanning window and removal of blinks and eye move- 
ment artifacts using Gratton’s regression-based correc- 
tion protocol (Gratton et al., 1983). A moving window 
approach was used to further check for remaining arti- 
facts by rejecting any epochs with flatlines or peak-to- 
peak activity higher than 200 μV (Lopez-Calderon & 
Luck, 2014). After removing possible artifacts, a fast Fou- 
rier transform was utilized to calculate the average alpha 
power in the 8–12 Hz frequency band (Cohen, 2014). 

 
Detection response task 
Performance on the Detection Response Task (ISO17488, 
2016) was used to capture the cognitive demand behavio- 
rally. The standardized protocol was followed by placing 
a small motor that vibrates every 3–5 s on participants’ 
left biceps (to avoid disrupting ECG signals, as previ- 
ously done; Lohani et al., 2020). Participants’ goal was 
to respond to the vibration onset as quickly as possible 
while driving (with priority always given to safe driv- 
ing) by pressing a microswitch attached to the left hand’s 
index or middle finger (ISO17488, 2016). The equipment 
and software were provided by Red Scientific Inc., which 
presented the stimuli and collected the responses. Vibra- 
tion was presented only for a second and then turned off. 
If the participant had to miss a response due to driving 
reasons, it was excluded from the analysis. An increase in 
driving-related cognitive workload is associated with an 
increase in reaction time and worse hit-rate performance 
on the Detection Response Task (Young et al., 2013). 

 
 

 
 

1 Given that these measures are being used to examine manual and partial 
automation-related cognitive workload, we wanted to test the reliability sep- 
arately under separable driving conditions. 

2 In accordance with best practices, a ground electrode was placed on the 
center of the forehead, the reference electrode was placed on the right mas- 
toid, and the electrooculographic activity was recorded from two electrodes 
above and below the right eye (Luck, 2014). 
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Procedure 
All procedures were approved by the Institutional Review 
Board of the University of Utah. During the first visit, 
participants read and signed the consent form. Four par- 
tially automated vehicles (Cadillac CT6, Nissan Rogue, 

Table 1 ICC1s (McGraw & Wong, 1996; Shrout & Fleiss, 1979) for 
each measure are plotted during partial automation and manual 
mode driving 

 

Measures ICC1 95% CI [LL, UL] 
 

Partial automation Manual 
Tesla Model 3, and Volvo XC90) were tested, with a sepa-   
rate visit3 for each (counterbalanced across participants). Heart rate (BPM) 0.7975 [0.7385, 0.8492] 0.8722 [0.7818, 0.9366] 
Physiological equipment was placed on participants in 
the lab. Next, the Detection Response Task equipment 

Heart rate variability 
(RMSSD) 

0.7196 [0.6460, 0.7875] 0.7669 [0.7009, 0.8257] 

was set up, and all signals were checked in the parking 
lot. Participants were trained on operating the car’s auto- 
mation features. The study was conducted within typi- 
cal work hours, 9 am to 5 pm, over weekdays. Given the 
naturalistic conditions of driving on real highways, some 
variability4 in traffic patterns is expected. Considering 
this, a large sample size was collected with the data col- 
lected within work hours, and the order was counter- 
balanced for highways across participants to increase 
generalizability to highway driving. Participants got to 
drive on a practice route before they started driving on 
pre-determined testing routes for all participants. On the 
same highways, participants drove on partial automation 
one way and the manual mode the other way, which took 
at least 18 min each way and was counterbalanced across 
conditions and people. Comparable traffic was found in 
both directions. If participants took slightly longer, only 
18 min of data were included for consistency across par- 
ticipants. A research assistant was always present in the 
vehicle to monitor safe driving practices and the quality 
of data collection in real time. 

 
Data analysis plan 
In order to address the first question about the test–retest 
reliability of each measure, intraclass correlations (ICCs) 
were estimated, which can range between 0 (no reliabil- 
ity) and 1 (perfect reliability; Weir, 2005). In particular, 
an ICC1 (McGraw & Wong, 1996; Shrout & Fleiss, 1979) 
estimates reliability for a single score from each subject 
across four occasions and is calculated by fitting a 1-way 
random effects model and estimating ICC via a ratio 
of the estimated variance components. Based on work 
by Weir (2005), a random effects model was selected 
because the partially automated vehicles were a sample 
of all possible options, thereby making the vehicles a ran- 
dom effect and allowing the findings to be generalized to 
other automation vehicle types as well. Note that vehicle- 
specific differences were not examined because no effect 
of vehicle type was found for the measures of cognitive 

 
 

3 On the day of the study, participants should have slept a min of 6 h and 
had a 0% blood alcohol level as verified by a breathalyzer. 
4 In past analyses, no significant differences within and between conditions 
were found for cognitive demands (see Lohani et al., 2021). 

EEG alpha power 0.9581 [0.9233, 0.9805] 0.9398 [0.9191, 0.9567] 
DRT reaction time 0.6947 [0.5223, 0.8403] 0.7469 [0.6768, 0.8098] 
DRT Hit-rate 0.6170 [0.5274, 0.7027] 0.6273 [0.5383, 0.7120] 

 

Heart rate is measured in beats per minute (BPM). Heart rate variability is 
measured by a time domain-based parameter called the root-mean-square 
of successive differences (RMSSD). DRT is the behavioral performance on the 
Detection Response Task 

95% confidence intervals (CI) are presented in brackets 
 

 
demand in on-road driving (Lohani et al., 2021; McDon- 
nell et al., 2023). In accordance with previous recommen- 
dations (McGraw & Wong, 1996; Shrout & Fleiss, 1979; 
Weir, 2005), while calculating intraclass correlation, a lin- 
ear mixed model was used, and if the model did not con- 
verge, an analysis of variance approach was adopted as an 
alternative (Weir, 2005). 

Based on guidelines (Revell & Condon, 2019; Shrout 
& Lane, 2012), to test the second question regarding the 
overall intercorrelation of cognitive demand measures, 
four coefficients were examined: (1) omega hierarchical 
(ωh; McDonald, 1999) is an internal consistency coef- 
ficient based on a general factor, (2) omega total (ωt; 
McDonald, 1999) is a coefficient that measures reliabil- 
ity assuming a multi-factor structure across measures; 
(3) R1R (Shrout & Lane, 2012) measures the generaliz- 
ability across all items (based on a random time effect); 
(4) Cronbach’s alpha (α; Cronbach, 1951) is the most 
commonly reported coefficients of generalizability.5 

These coefficients would provide information to evalu- 
ate the generalizability of the multiple measures of cog- 
nitive demand that were assessed simultaneously across 
four occasions. All analyses were conducted in RStudio 
(2016). 

Results 
Test–retest reliabilities for each measure 
Table 1 presents the intraclass correlations for each 
of the five cognitive demand measures and their 95% 

 

 
5 However, it has been strongly criticized and discouraged (Revell, 2013) 
as a measure of stability of a test, reliability, or internal consistency due to 
its lack of reflection of the structure of the test, lack of auto-correlation due 
to short-term state consistency equivalence (such deviations will lead to α 
underestimating reliability; Teo & Fan, 2013). 
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confidence intervals. Based on the previous classifica- 
tions for intraclass correlation coefficients (Koo & Li, 
2016), excellent test–retest reliability was found for EEG 
alpha power, followed by good reliability for heart rate (in 
BPM) and moderate reliability for heart rate variability 

Table 3 Intercorrelation coefficients of cognitive demand 
measures are presented for partial automation and manual 
modes 

(in RMSSD) measure. Moderate reliability was also found 
for the Detection Response Task’s reaction time and hit- 
rate measures. A comparison of intraclass correlation 
confidence intervals for partial automation and manual 

Omega hierarchical (ωh) 0.36 

modes showed overlap, suggesting comparable coeffi- 
cients for both. 

 
Internal consistency across measures 
Table 2 presents the within and between-person level 
correlations across all measures. Although there were 
some significant correlations, such as associations 
between cardiovascular measures and behavioral meas- 
ures, there was a notable lack of correlations between 
cardiovascular and EEG measures at both the within- 
and between-person levels, and generally, correlation 
coefficients were low across measures derived from dif- 
ferent measurement tools. 

The results of internal factor(s)-based coefficients are 
reported in Table 3. The omega hierarchical (ωh; McDon- 
ald, 1999) coefficient has been proposed as the best 
estimate of a general factor (Revelle & Zinbarg, 2009; 
Zinbarg et al., 2006). It indicated low reliability based on 
a general factor (or a single latent variable solution) for 
cognitive demand across all the measures. In contrast, 
the omega total (ωt; McDonald, 1999, which allows for 
a multi-factor solution and is based on all factors) was 
indicative of higher internal consistency, supporting cog- 
nitive demand as a multi-factor construct specifically 

+ Omega is designed for internal consistency at an occasion (Revelle & Condon, 
2019); thus, in order to calculate a single coefficient analogous to other reliability 
coefficients, an average ωh was calculated across four occasions of partial 
automation mode (0.3, 0.3, 0.52, 0.33) and manual mode (0.42, 0.24, 0.29, 0.4) 
# Similar to ωh, for interpretation, average ωt values are reported by averaging 
across occasions for partial automation mode (0.66, 0.78, 0.85, 0.37) and manual 
mode (0.78, 0.82, 0.86, 0.45) 

 
 

 
in the context of automation and manual driving on the 
road. The R1R coefficient of generalizability across items 
utilizing random time effect (Shrout & Lane, 2012) had 
similar estimates as the omega total. 

Discussion 
Partially automated vehicles show growing promise for 
safer driving as long as the motorists are cognitively 
engaged in the driving process and ready to take over 
when automation fails (NHTSA, 2013; SAE, 2016). How- 
ever, motorists can inaccurately assess their cognitive 
states (Schmidt et al., 2009) and misuse automation alto- 
gether, thereby creating unsafe conditions for operating 
partially automated vehicles on actual highways. Thus, 
objective measures are needed to evaluate optimal lev- 
els of cognitive demand experienced by motorists dur- 
ing real-world driving tasks, such as driving on actual 

 
Table 2 For all the measures, within-person level correlations across the four occasions are reported above the middle blank line, and 
between-person correlations are reported below it for a) partial automation mode and b) manual driving mode 

 

 Heart rate (BPM) Heart rate 
variability (RMSSD) 

EEG alpha power DRT reaction time DRT hit-rate 

a) Partial Automation      

Heart rate (BPM)  − 0.66*** 0.09 − 0.01 0.11 
Heart rate variability (RMSSD) − 0.4***  − 0.04 0.07* − 0.04 
EEG alpha power 0.03 − 0.18  0.19* − 0.17* 
DRT Reaction Time − 0.04 − 0.21 0.26*  − 0.33*** 
DRT Hit-rate 0.15 0.38** − 0.3* − 0.63*** 1 

b) Manual mode      
Heart rate (BPM)  − 0.75*** 0.01 − 0.09 0.11 
Hear rate variability (RMSSD) − 0.47***  0.01 0.05 − 0.11 
EEG alpha power − 0.02 − 0.1  0.13 − 0.16* 
DRT Reaction Time 0.01 − 0.23 0.28*  − 0.27** 
DRT Hit-rate 0.09 0.27* − 0.26* − 0.66  

*is p < 0.05; ** is p < 0.01; *** is p < 0.001. Heart rate is measured in beats per minute (BPM). Heart rate variability is measured by a time domain-based parameter called 
the root-mean-square of successive differences (RMSSD). DRT is the behavioral performance on the Detection Response Task 

Partial automation Manual 

+ 0.34 
Omega total (ωt)# 0.67 0.73 
R1R 0.68 0.68 
Cronbach’s alpha 0.58 0.37 
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highways, which are less controllable and more demand- 
ing than traditional laboratory tasks. The current study 
was the largest effort to examine the reliability of using 
a combination of peripheral and central nervous system- 
based and behavioral measures of cognitive demand 
based on a representative sample of motorists who oper- 
ated partial automation vehicles on real roads. 

An examination of the stability of laboratory-based 
measures under uncontrollable highway driving condi- 
tions revealed that EEG alpha power had excellent reli- 
ability. Similarly, cardiovascular measures of heart rate 
and its variability (RMSSD) had good reliability, and 
Detection Response Task performance measures had 
moderate reliabilities. Thus, the current study addresses 
concerns regarding the reliability of these measures in 
real-world automation research, as acceptable test–retest 
reliabilities were found across all measures for drivers 
across occasions. While these findings should be repli- 
cated and extended to be generalized to other automa- 
tion research (e.g., public transportation, aviation, and 
military), they imply that the psychometric properties 
were remarkably good and that these measures may be 
successfully adapted to applied automation research. 

Despite the acceptable temporal stability of each meas- 
ure, we observed low correlations between each measure, 
suggesting that they tap into different aspects of cogni- 
tive demand during driving instead of a general cognitive 
demand construct. As evident across multiple measures 
of internal consistency (such as ωh), the generalizability 
was low for a general cognitive demand factor (Kahne- 
man, 1973). However, when cognitive demand was esti- 
mated as a multi-factorial construct (Wickens, 1980, 
1984), much better internal consistency was found across 
measures assessed during partial automation and manual 
driving in real-world contexts. This implies that it is bet- 
ter to conceptualize cognitive demand while operating 
automation as a multi-dimensional construct than to 
force a general latent construct. These findings are con- 
sistent with past work that has found support for multi- 
factor solutions for related constructs in real-world 
conditions, such as listening effort (Alhanbali et al., 2019) 
and workload (Matthews et al., 2015). Low correlations 
across measures and support for a multi-dimensional 
construct also highlight the importance of utilizing a 
combination of psychophysiological and behavioral 
methods to capture multi-faceted cognitive demand in 
applied settings (Lohani et al., 2019). These findings sup- 
port a growing literature highlighting the applicability of 
multi-modal measures to studies of real-world automa- 
tion research (de Waard & Lewis-Evans, 2014; Lohani 
et al., 2019). 

Some limitations and future directions of the study 
should be considered. First, it was not an extensive 

evaluation of all cognitive demand measures, and 
future work should include additional measures to 
expand on the current work (e.g., pupillometry, ther- 
mal and optical imaging). Second, even though the 
study was conducted on highways, a research assistant 
was sitting in the car to ensure safe driving procedures, 
which could have influenced operators’ driving behav- 
ior. Third, it would also help to specifically target high- 
stress scenarios while operating partial automation, 
such as automation failures, which would allow testing 
the sensitivity of cognitive demand measures. Although 
these scenarios could not be manipulated for ethical 
reasons, but longitudinal data collection could capture 
these instances, as they naturally happen in real-world 
settings. Fourth, we did not assess how long durations 
of data collection are, when factors like vigilance or 
fatigue may start varying and may impact measures like 
error rates performance on Detection Response Task 
(Taylor-Phillips et al., 2024), and future work should 
examine this in real-world settings. Finally, this study 
examined Level 2 partially automated vehicles; future 
work is needed to extend this work to highly automated 
vehicles (Levels 3–5) in real-world settings. 

 
 

Conclusion 
We examined the reliability of a combination of behav- 
ioral, peripheral, and central nervous system-based 
measures for a near real-time assessment of drivers’ 
cognitive demand. Good to excellent reliabilities were 
found for all measures, providing confidence in their 
successful adoption in real-world automation research. 
While a general factor solution fit the data poorly, a 
multi-factorial model yielded improved measures of 
reliability, suggesting that these measures tap into a 
multi-dimensional cognitive demand construct while 
operating automation on real roads. 
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