I am passionate about graduate and undergraduate teaching and bring this enthusiasm to my work with students in classroom settings as well as in consultation and small group settings. My position in the department is one that balances (a) quantitative instruction and consultation with (b) basic and applied clinical research on couples. My current teaching and plans for future developments reflect this dual role, and my expertise in both applied statistics and couple therapy. My current teaching involves graduate and undergraduate statistics courses (Quantitative Methods I and Multilevel Modeling) as well as statistical consultation on masters and dissertation theses, conference submissions, journal manuscripts, and grant submissions. My plans for future development include creating additional, advanced, graduate-level statistics courses and a graduate-level training opportunity in couple therapy. I have been deeply honored to be recognized for my teaching during my time at USC by receiving the Mellon Mentoring Award and being nominated for the Parent's Association Teaching Award and to have received continued recognition of my teaching at the University of Utah by being selected as a finalist for the University Superior Teaching Award this past year. I outline my teaching philosophy as well as recent innovations and plans for future curriculum development in both statistics and couple therapy below.

Teaching philosophy

My approach to teaching is rooted in the belief that learning is the product of a dynamic, transactional process between teacher and student that works best when it involves bi-directional feedback and ongoing adaptation. In my experience, learning is maximized when students are engaged in a collaborative enterprise with professors and classmates, are challenged to think deeply about how to apply acquired knowledge to answer questions and solve problems, and are encouraged to participate actively in learning both inside and outside of the classroom. One way that I pursue these goals in my graduate teaching is to balance and sequence skills and knowledge acquisition in the classroom with direct application to students’ on-going research through course assignments. I encourage students to use course assignments as a way to examine the statistical aspects of their research thoroughly and to get a “pre-review” of the statistical elements of that work. It has been very gratifying to hear from students that this approach has been helpful in developing concrete work products from course assignments. In my two years teaching the Multilevel Modeling course, one student adapted her final course assignment into a conference poster that won an award and another has an in-press, first-authored, introductory chapter on Multilevel Modeling. I think balancing the acquisition of theoretical and conceptual statistical knowledge and analytic skills with real world application is not only helpful for meeting the competing needs of graduate students but also a means for increasing the retention of knowledge and skills obtained through coursework.

I apply a similar philosophy to my mentorship of graduate and undergraduate students. I strive to provide students with a well-balanced set of instructional and applied opportunities for intellectual and professional development that are tailored to their individual needs and career aspirations. For my graduate students, this includes mentorship and guidance in research and teaching and will expand to include clinical work in the near future. My approach to mentoring in each of these domains is to provide graduated opportunities that are appropriate for their level of training and experience and that prepare them for more advanced opportunities. For example, I mentored each of my current second year graduate students in submitting an application for an NSF Graduate Research Fellowship, submitting multiple conference abstracts, holding a leadership position in the major study being conducted in my lab, leading a smaller, independent research project in my lab, beginning preparation of a manuscript, and preparing their masters proposal during their first year. This collection of experiences is intended to help them jumpstart their research careers by focusing their efforts on concrete products that are intended for beginning graduate students while also providing them with opportunities to develop the wide range of research skills that they will need to conduct their masters theses and dissertations as well as a foundation upon which to build the additional skills that they will need to run their own research programs. My
approach to mentoring undergraduate students is similar in supporting highly motivated students in their pursuit of higher education. I seek to help students foster their intrinsic motivation and passion for learning about psychology by recruiting talented students to be research assistants on my research projects. In the future, I plan to encourage particularly talented undergraduates interested in a research career to conduct an honors thesis in my lab and will offer to serve as their mentor on the project. I mentored 6 honors thesis students while at USC and helped these students win 10 internal fellowships and 2 internal grants to further fund undergraduate work. I will implement a similar model in my mentorship of undergraduate honors thesis students at the U of Utah.

Recent teaching innovations

I have created and helped to create several new opportunities for students to receive additional statistics education. These opportunities include a new course (Multilevel Modeling), additional means for receiving statistical consultation through my work with Jon Butner to create a graduate student statistical consultant, and starting a research group that focuses on the intersection of dyadic statistical analytic techniques and substantive research questions about romantic relationships. This bi-weekly research group provides students with an opportunity to gain familiarity with advanced dyadic analysis methods used in relationship research that are not currently covered in courses.

Plans for developments in teaching

My plans for future developments in teaching include creating new advanced statistics courses and a new clinical training opportunity in couple therapy. With regard to statistics, I plan to develop an advanced course in Multilevel Modeling that will include a significant focus on dyadic analysis. Additionally, Jon Butner and I are collaborating on creating a range of new opportunities for students to receive instruction in and hands-on practice with cutting edge statistical techniques. Mostly proximally, next year’s SyNC (a dynamic systems brown bag created by Jon Butner) will focus on the analysis of intensive, longitudinal, dyadic data using real world data. More distally, we plan to create an advanced, topical statistics seminar that will offer workshop style instruction in modern methods not covered in existing coursework as well as additional instruction in the questions most commonly asked in our statistical consultation. With regard to clinical training in couple therapy, I am working with Katherine Baucom to create a graduate-level training opportunity in couple therapy that will offer instruction in and supervision of empirically supported couple therapies for relationship distress. These planned developments are intended to both broaden and deepen the current statistical offerings and to expand the range of clinical training opportunities.